
Hyperfine-grained Meanings in Classical Logic∗

Reinhard Muskens

1 Logical Omniscience

Let us call two expressions synonymous if and only if they may be inter-
changed in each sentence without altering the truth value of that sentence.1

With the help of an argument by Benson Mates (Mates [1950]) it can be
shown that synonymy is a very strong relation indeed. Consider, for exam-
ple, the following two sentences.

(1) Everybody believes that whoever thinks that all Greeks are courageous
thinks that all Greeks are courageous

(2) Everybody believes that whoever thinks that all Greeks are courageous
thinks that all Hellenes are courageous

Some philosophers indeed believe that whoever thinks that all Greeks are
courageous also thinks that all Hellenes are courageous.2 But certainly not
everyone agrees, and so (2) is false. We may assume, on the other hand, that
(1) is true, and since (1) can be obtained from (2) by replacing ‘Hellenes’ by

∗This is a reprint from Logique & Analyse 133-134, 1991, pp. 159-176. A preliminary
version of the paper appeared as ‘Logical Omniscience and Classical Logic’ in D. Pearce
and G. Wagner (eds.), Logics in AI, Lecture Notes in Artificial Intelligence 633, Springer,
Berlin, 1992, 52-64. I would like to thank Ed Keenan, Heinrich Wansing and the audiences
at JELIA ‘92 and the Epistemic Logic Colloquium for comments and criticisms.

1This essentially is Mates’s [1950] formulation of the interchangeability principle. Note
how close Mates’s formulation is to Leibniz’s:

Eadem sunt quorum unum potest substitui alteri salva veritate.

2E.g. Putnam in Putnam [1954].
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‘Greeks’, the latter two words, somewhat surprisingly, are not synonymous.
By a similar procedure any pair of words that are normally declared synonyms
can be shown not to be synonymous after all, if our definition of the term is
accepted.
Worse, it seems that the relation of synonymy is even stronger than the

relation of logical equivalence is. Sentences that are normally accepted to be
logically equivalent need not be synonymous. Suppose3 Jones wants to enter
a building that has three doors, A, B, and C. The distances between any
two of these doors are equal. Jones wants to get in as quickly as possible,
without making detours and he knows that if A is locked B is not. Now,
if our agent tries to open door B first and finds it locked there might be a
moment of hesitation. The reasonable thing for Jones is to walk to A, since if
B is locked A is not, but he may need some time to infer this. This contrasts
with the case in which he tries A first, since if he cannot open this door
he will walk to B without further ado. The point is that one may well fail
to realize (momentarily) that a sentence is true, even when one knows the
contrapositive to hold. For a moment (3) might be true while (4) is false.

(3) Jones knows that if A is locked B is not locked

(4) Jones knows that if B is locked A is not locked

It follows that the two embedded sentences are not synonymous, even though
logically equivalent on the usual account.
All reasoning takes time. This means that

(5) Jones knows that ϕ

need not imply

(6) Jones knows that ψ,

even if ϕ and ψ are logically equivalent. If the embedded sentences are syn-
tactically distinct then, since Jones needs time to make the relevant inference,
there will always be a moment at which (5) is true but (6) is still false.
Of course, the easier it is to deduce ψ from ϕ the shorter this time span

will be and the harder it is to imagine that Jones knows ϕ without realizing

3This example is adapted from Moore [1989].
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that ψ. We ascribe to Jones certain capacities for reasoning, even if we do
not grant him logical omniscience. For instance, if Jones knows A and B,
then it is hard to imagine that he would fail to know B and A as well. But
even here there may be a split-second where the necessary calculation has yet
to be made. Therefore ‘Jones knows B and A’ does not follow from ‘Jones
knows A and B’.
A real problem results if we try to formalise the logic of the verb to

know and its like. All ordinary logics (including modal logics) allow logical
equivalents to be interchanged, but epistemic contexts do not admit such
replacements. It thus may seem that the logic of the propositional attitude
verbs is very much out of the ordinary and that we must find a logic that
does not support full interchangeability of equivalents if we want our theory
of the propositional attitudes to fit the facts.
Systems that do not admit replacement of equivalents do in fact exist.

For example Rantala [1982a, 1982b], working out ideas of Montague [1970],
Cresswell [1972] and Hintikka [1975], offers an ‘impossible world semantics’
for modal logic in which the interchangeability property fails. In the next sec-
tion I’ll criticise Rantala’s system for not being a logic in the strict sense, but
I think that its main underlying idea, the idea that we can use ‘impossible’
worlds to obtain a very fine grained notion of meaning, is important and use-
ful. Despite appearances however, this idea is compatible with classical logic
and in section 4 I shall show in some detail how we can use impossible worlds
to treat the propositional attitudes without resorting to a non-standard logic.
The logic that I shall use is the classical type theory of Church [1940]. Sec-
tion 3 will be devoted to a short exposition of this logic for the convenience
of those readers who are not already familiar with it.

2 Rantala Models for Modal Logic

The basic idea behind Rantala’s interpretation of the language of proposi-
tional modal logic is to add a set of so-called impossible (or: non-normal)
worlds to the usual Kripke frames. Equivalence can then be defined with re-
spect to possible worlds only, but for interchangeability the impossible ones
come into play as well. The net result will be that equivalents need not be
interchangeable in the scope of the epistemic operator K.
Formally, a Rantala model for the language of propositional modal logic

is a tuple 〈W,W ∗, R, V 〉 consisting of a non-empty set W of possible worlds,
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a set W ∗ of impossible worlds, a relation R ⊆ (W ∪W ∗)2, and a two-place
valuation function V : Form× (W ∪W ∗)→ {0, 1} such that for all w ∈ W :

(i) V (¬ϕ,w) = 1 iff V (ϕ,w) = 0

(ii) V (ϕ ∧ ψ,w) = 1 iff V (ϕ,w) = 1 and V (ψ,w) = 1

(iii) V (Kϕ,w) = 1 iff V (ϕ,w′) = 1 for all w′ ∈ W ∪ W ∗ such that wRw′.

Note that the value of a complex formula in an impossible world can be
completely arbitrary. The value of a complex formula does not depend on
the values of its parts. Note also that Rantala models clearly generalize
Kripke models: a Kripke model simply is a Rantala model with empty W ∗.
A formula ψ is said to follow from a formula ϕ if V (ϕ,w) = 1 implies

V (ψ,w) = 1 in each Rantala model 〈W,W ∗, R, V 〉 and w ∈ W. A formula ϕ
is valid in a Rantala model if V (ϕ,w) = 1 in each w ∈ W. A formula ϕ is
valid simpliciter if it is valid in each Rantala model. Formulae ϕ and ψ are
equivalent iff ϕ follows from ψ and ψ follows from ϕ. Clearly, all propositional
tautologies are valid, but Necessitation fails: validity of ϕ does not imply
validity of Kϕ. This is as it should be: one may well fail to know that a
sentence is true even if it is valid. Also the K schema fails: write ϕ → ψ
for ¬(ϕ ∧ ¬ψ), then K(ϕ → ψ) → (Kϕ → Kψ) is not valid. This is also
as desired, since knowledge is not closed under modus ponens. The notion
of validity just defined is indeed a minimal one: with the help of standard
techniques it is easily shown that a sentence is valid if and only if it is a
substitution instance of a propositional tautology.
Equivalent sentences need not be interchangeable in this system. For

instance, p and ¬¬p are equivalent, but a model in which Kp and K¬¬p are
assigned different truth values in some possible world is easily constructed.
The system thus meets the requirement discussed in the previous section.
Wansing [1990] shows that a number of formalisms that have arisen in AI

research can in fact be subsumed under the impossible worlds approach. He
proves in some detail that the knowledge and belief structures that were pro-
posed in Levesque [1984], Vardi [1986], Fagin & Halpern [1988] and Van der
Hoek & Meyer [1988] can be reduced to non-normal worlds models. Thijsse
[1992] on the other hand proves that Rantala models can be reduced to the
models of Fagin & Halpern [1988] (if the latter are slightly generalised) and
thus, using Wansing’s result, obtains equivalence between Rantala semantics
and Fagin & Halpern’s logic of general awareness.
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The system is elegant enough, generalises Kripke’s semantics for modal
logic and subsumes other approaches to the logic of the propositional atti-
tudes, then what are my qualms? Here is one. We have just defined the
implication ϕ → ψ with the help of ¬ and ∧. Alternatively, we could have
introduced the arrow as a primitive, imposing the extra constraint that for
all models 〈W,W∗, R, V 〉 and for all w ∈ W :

(ii′) V (ϕ ⇒ ψ,w) = 0 iff V (ϕ,w) = 1 and V (ψ,w) = 0.

But the two methods lead to different results. For even while the formulae
ϕ→ ψ and ϕ⇒ ψ are equivalent, they are not interchangeable in all contexts:
K(ϕ → ψ) and K(ϕ ⇒ ψ) may have different truth values in some possible
world. The addition of ⇒ to the language and the addition of clause (ii′)
to the definition of a Rantala model really added to the logic’s expressive
power. Two Rantala models may validate exactly the same sentences of the
original language, yet may differ on sentences of the new language.
This means that functional completeness fails for Rantala’s system. Usu-

ally, when setting up a logic, we can contend ourselves with laying down
truth conditions for some functionally complete set of connectives, say ¬ and
∧. Adding connectives and letting them correspond to new truth functions
usually does not increase expressive power since all truth functions are ex-
pressible with the help of ¬ and ∧. But in the present case this is no longer
so.
Why? The source of the trouble is that in Rantala models the interpre-

tation of logical constants is not fixed. Even a reduplication of one of the
logical constants would strengthen the system. Let us add a connective &
to the system and impose a condition completely analogous to (ii), namely
that for all w ∈ W :

(ii′′) V (ϕ & ψ,w) = 1 iff V (ϕ,w) = 1 and V (ψ,w) = 1

The weird result is that K(ϕ ∧ ψ) is not equivalent with K(ϕ & ψ) and that
it is possible now to distinguish between models that were indistinguishable
(i.e. validated the same sentences) before. The question arises: which is the
real conjunction, ∧ or &?
Is it possible to have a logic if the interpretations of the logical constants

are allowed to vary with each model? This question can only be answered
if some criterion of logicality is accepted. Such criteria have been developed
within abstract model theory (see Barwise [1974]), a branch of logic where
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theorems are proved of the form: “every logic that has such-and-such prop-
erties is so-and-so”.4 Rantala [1982b] notes that in fact his system does not
meet the standards that are usually set here. There is a problem with re-

naming. In general the truth value of a formula should not change if we
replace some non-logical constant in it by another constant which has the
same semantic value. In Rantala models this fails, for example, it is easy to
construct a Rantala model such that V (p, w) = V (q, w) for all w ∈W ∪W ∗

but V (K¬p, w) 6= V (K¬q, w) for some possible world w ∈ W. The value of
K¬p thus may crucially depend on the particular name that we have chosen
for the proposition that is denoted by p.
This may or may not be defensible, but, as I shall show below, the weird

characteristics of Rantala’s system are not essential to the idea of impossible
world semantics. The idea can be formalised with the help of a system that
meets all standards of logicality.
The basic intuition behind the introduction of impossible worlds is that,

since we humans are finite and fallible, we fail to rule out worlds which would
be ruled out by a perfect reasoner. What do such worlds look like? Well, for
example, one of Jones’ epistemic alternatives was the impossibility that ‘if A
is locked B is not’ is true, but that ‘if B is locked A is not’ is false. For a short
time, at least one impossible world in which the first sentence is true but the
second is not was not ruled out by Jones’ reasoning. But in such worlds
the words ‘not’ and ‘if’ cannot get their usual Boolean interpretation, since
this interpretation would simply force the sentences to be equivalent. We
therefore end up with non-standard interpretations for the ‘logical’ words in
English: ‘and’ cannot be intersection of sets of worlds, ‘or’ cannot be union,
‘not’ cannot be complementation and so on.
Rantala formalises this by treating the word ‘and’ as the connective ∧

but by giving this last symbol a non-logical interpretation. This leads to a
funny system. The obvious alternative is to keep the logic standard but to
formalise the English word ‘and’ and its like as non-logical constants: once it
is accepted that no logical operation strictly corresponds to the English word
‘and’, the most straightforward solution is be open about it and to formalise
the word with the help of a non-logical constant.
Of course, some connection between the ‘logical’ words in English and

4An example is Lindström’s Theorem, which says that for no logic properly extending
first-order predicate logic both the Compactness Theorem and the Löwenheim-Skolem
Theorem hold.
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the connectives that usually formalise them should remain intact. What
connection? Even if we allow the interpretations of the ‘logical’ words to be
completely arbitrary, there will be a subset of the set of all worlds where
‘and’ and its ilk behave standardly. These worlds where the logical words of
English have their usual logical interpretation may be called the ‘possible’ or
‘actualizable’ ones. As we shall see below, the assumption that the actual
world is actualizable leads to the desired relation of logical consequence.
But it is high time for a more precise formalisation. In the next section

I give a short sketch of the classical logic that I want to use and in the last
section I’ll apply it to the propositional attitude verbs.

3 Classical Type Theory

Since we want to treat ‘and’, ‘or’, ‘not’, ‘if’, ‘every’ and ‘some’ as non-logical
constants, we should use a logic that admits of non-logical constants for
these types of expressions. Ordinary predicate logic will not do, but a logic
that is admirably suited to the job is Church’s [1940] formulation of Russell’s
Theory of Types (Russell [1908]). Since I expect that not all of my readers are
familiar with this system, I’ll give it a short exposition (and so readers who
already know about the logic can skip this section). For a more extensive
account one may consult the original papers (e.g. Church [1940], Henkin
[1950, 1963]), Gallin [1975], the survey article Van Benthem & Doets [1983],
or the text book Andrews [1986]. In Muskens [1989a, 1989b, 1989c] some
variants of the logic are given, but I’ll follow the standard set-up here.
In classical type theory each logical expression comes with a type. Types

are either basic or complex. The type of truth values, here denoted with t,
should be among the basic types, but there may be other basic types as well.
In this paper, for example, we’ll assume types for individuals (type e) and
worlds (type s). Complex types are of the form αβ5 and an expression of
type αβ will denote a function which takes things of type α to things of type
β. Formally we define:

Definition 1 (Types). The set of types is the smallest set such that:

i. all basic types are types,

ii. if α and β are types, then (αβ) is a type.

5Sometimes denoted as α → β, sometimes as βα.
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Definition 2 (Frames). A frame is a set of non-empty sets {Dα | α is a type}
such that Dt = {0, 1} and Dαβ ⊆ {f | f : Dα → Dβ} for all complex types
αβ .

The sets Dα will function as the domains of all things of type α. Note that
we do not require domains Dαβ to consist of all functions of the correct type,
as this would make the logic essentially higher-order and non-axiomatisable.
Let us assume for each type α the existence of denumerably infinite sets of
variables and non-logical constants varα and conα. From these we can build
up terms with the help of lambda abstraction, application and the identity
symbol.

Definition 3 (Terms). Define, for each α, termα, the set of terms of type α,
by the following inductive definition:

i. conα ⊆ termα; varα ⊆ termα;

ii. A ∈ termαβ , B ∈ termα ⇒ (AB) ∈ termβ ;

iii. A ∈ termβ , x ∈ varα ⇒ λx(A) ∈ termαβ;

iv. A, B ∈ termα ⇒ (A = B) ∈ termt .

If A ∈ termα we may indicate this by writing Aα. Terms of type t are
called formulae. We obtain most of the usual logical signs by means of
abbreviations.

Definition 4 (Abbreviations).
> abbreviates λxt(xt) = λxt(xt)
∀xαϕ abbreviates λxαϕ = λxα>
⊥ abbreviates ∀xt(x)
¬ϕ abbreviates ϕ = ⊥
ϕ ∧ ψ abbreviates λX t(tt) ((X>)>) = λX t(tt) ((Xϕ)ψ)

The rest of the usual logical constants can be got in an obvious way.
In order to assign each term a value in a given frame, we must interpret all

variables and non-logical constants in that frame. An interpretation function
I for a frame F = {Dα}α is a function with the set of non-logical constants as
its domain, such that I(c) ∈ Dα for each constant c of type α. Likewise, an
assignment a for a frame {Dα}α is a function that has the set of all variables
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for its domain, such that a(x)∈ Dα for each variable x of type α. If a is an
assignment, then a[d/x] is defined by a[d/x](x) = d and a[d/x](y) = a(y),
for y 6= x.
A very general model is a tuple 〈F , I〉 consisting of a frame F and an

interpretation function I for that frame. Given some very general model and
an assignment, we can give each term a value.

Definition 5 (Tarski Definition). The value [[A]]M ,a of a term A on a very
general model M = 〈{Dα}α, I〉 under an assignment a for {Dα}α is defined
as follows (to improve readability I write [[A]]or [[A]]a for [[A]]M ,a):

i. [[c]]= I(c) if c is a constant;
[[x]]= a(x) if x is a variable;

ii. [[AαβBα]] =

{

[[A]]([[B]]), if [[B]] ∈ dom([[A]])
∅, otherwise

iii. [[λxαA]]
a = the function f with domain Dα such that for all d ∈ Dα :

f(a) = [[A]]a[d/x];

iv. [[A = B]] = 1 iff [[A]] = [[B]].

We define a (general) model to be a very general model M = 〈{Dα}α, I〉
such that[[Aα]]

M ,a ∈ Dα for every term Aα and we restrict our attention to
general models. Note that in general models the second subclause of ii. does
not apply (we needed it for the correctness of definition 5). The reader may
verify that on general models the logical constants >, ∀, ⊥, ¬ and ∧ get their
usual (classical) interpretations.
The semantic notion of entailment is defined as follows.

Definition 6 (Entailment). Let Γ ∪ {ϕ} be a set of formulae. Γ entails ϕ,
Γ |= ϕ, if, for all models M and assignments a to M , [[ψ]]M ,a = 1 for all ψ ∈
Γ implies [[ϕ]]M ,a = 1.

Henkin [1950] has proved that it is possible to axiomatise the logic. In fact,
an elegant set of four axiom schemes and one derivation rule will do the
job. For details see the literature mentioned above. For the present purposes
it suffices to note that β-conversion and η-conversion hold and that we can
reason with = and the defined constants>, ∀, ⊥, ¬ and ∧ as in (many-sorted)
classical predicate logic with identity.
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4 Classical Logic Without Logical Omniscience

Let us apply our logic to English.6 Since we have decided to treat the ‘logical’
words as non-logical constants, we can now uniformly treat all words as such.
Table 1 below gives a list of all constants that we shall use in this paper,
most of them named in a way that makes it easy to see which words they are
supposed to formalise (the others will not directly translate words of English;
their use will become apparent below). The constants in the first column of
the table have types as indicated in the second column.
The idea behind the type assignment7 is that the meaning of a sentence, a

proposition, is a function that gives us a truth value in each world (and thus
it is a function of type st), that the meaning of a predicate like planet is a
function that gives a truth value if we feed it an individual and a world (type
e(st)) and that an expression that expects an expression of type α should be
of type αβ if the result of combining it with such an expression should be of
type β. So, for example, not is of type (st)(st) since it expects a proposition
in order to form another proposition with it; the name mary gives a sentence
if it is followed by a predicate and may therefore be assigned type (e(st))(st).

non-logical constants type

not (st)(st)
and, or, if (st)((st)(st))
every, a, some, no (e(st))((e(st))(st))
is ((e(st))(st))(e(st))
hesperus, phosphorus, mary (e(st))(st)
planet, man, woman, walk, talk e(st)
believe, know (st)(e(st))
i s
h, p, m e
B, K e(s(st))

Table 1: Some non-logical constants

Some easy calculation shows that the following are terms of type st.

6The application of type logic to the formalisation of English discussed in this section
beneficed greatly from Montague [1970a, 1970b, 1973]. In fact we can think of it as a
streamlined form of Montague semantics.

7Essentially this assignment was used in Montague [1970b] and Lewis [1974].
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(7) (some woman)walk

(8) (no man)talk

(9) hesperus (is (a planet))

(10) (if((some woman)walk))((no man)talk)

(11) (if((some man)talk))((no woman)walk)

(12) mary(believe((if((some woman)walk))((no man)talk))

(13) mary(believe((if((some man)talk))((no woman)walk))

Clearly, these terms bear a very close resemblance to the sentences of English
that they formalise. For example, the structure of (12) is isomorphic or
virtually isomorphic to the structure that most linguists would attach to the
sentence ‘Mary believes that if some woman is walking no man is talking’.
But it should be kept in mind that these are terms of the logic and can be
subject to logical manipulation.
We must of course make a connection between at least some of the non-

logical constants that we have just introduced and the logical constants of
the system. For example, (10) should be equivalent with (11), but as matters
stand these two terms could denote two completely different (characteristic
functions of) sets of worlds. Up to now, we have allowed the interpretations
of the constants not, and, or, if and the like to be completely arbitrary, but
it is not unreasonable to assume that at least in the actual world, which we
denote with the constant i, these interpretations are standard. In order to
ensure this we impose the following non-logical axioms.8

8Here and in the rest of the paper I shall let j and k be type s variables; x and y type
e variables; (subscripted) P a variable of type e(st); Q a type (e(st))(st) variable; and p

and q variables of type st. Variables are in italic, constants in sans serif.
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A1 ∀p((not p)i ↔ ¬pi)
A2 ∀pq(((and p)q)i ↔ (pi ∧ qi))
A3 ∀pq(((or p)q)i ↔ (pi ∨ qi))
A4 ∀pq(((if p)q)i ↔ (pi →qi))
A5 ∀P1P2(((every P1)P2)i ↔ ∀x((P1x)i → (P2x)i))
A6 ∀P1P2(((a P1)P2)i ↔ ∃x((P1x)i ∧ (P2x)i))
A7 ∀P1P2(((some P1)P2)i ↔ ∃x((P1x)i ∧ (P2x)i))
A8 ∀P1P2(((no P1)P2)i ↔ ¬∃x((P1x)i ∧ (P2x)i))
A9 ∀Q∀x(((is Q)x)i ↔ (Qλyλj(x = y))i)
A10 ∀P ((hesperus P )i ↔ (P h)i)

∀P ((phosphorus P )i ↔ (P p)i)
∀P ((mary P )i ↔ (P m)i).

These axioms tell us that an expression not p is true in the actual world i
if and only if p is false in i, that (and p)q is true in i if and only if p and q
are both true in i, and so on. Given these axioms many sentences get their
usual truth value in the actual world. For example A7 tells us that ((some
woman)walk)i and ∃x((woman x)i ∧ (walk x)i) are equivalent, A8 says that
((no man)talk)i is equivalent with ¬∃x((man x)i ∧ (talk x)i). Axiom A10
says that there is an individual h such that the quantifier hesperus holds of
some predicate at i if and only if that predicate holds of h at i. We can use
the axioms to see that the following terms are equivalent.

hesperus (is (a planet))i
((is (a planet))h)i (A10)
((a planet)λyλj(h = y))i (A9)
∃x((planet x)i ∧ (λyλj(h = y)x)i) (A6)
∃x((planet x)i ∧ h = x) (β-reduction twice)
(planet h)i (predicate logic)

Let Φ be the conjunction of our finite set of axioms and let [k/i]Φ be the result
of substituting the type s variable k for each occurrence of i in Φ. The st term
λk[k/i]Φ denotes the set of those worlds in which not, and, or, if etc. have their
standard logical meaning. We may view the term λk[k/i]Φ as formalising the
predicate ‘is logically possible’ or ‘is actualizable’. The axioms thus express
that the actual world is logically possible or actualizable.
We define a notion of entailment on st terms with the help of the set

of axioms AX = {A1,. . . ,A12} (A11 and A12 will be given shortly). An
argument is (weakly) valid if and only if the conclusion is true in the actual
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world if all premises are true in the actual world, assuming that the actual
world is actualizable.

Definition 7 (Weak entailment). Let ϕ1, . . . , ϕn be terms of type st. We say
that ψ followsfrom ϕ1, . . . , ϕn if AX, ϕ1i, . . . , ϕni |= ψi. Terms ϕ and ψ of
type st are called equivalent if ψ follows from ϕ and ϕ follows from ψ.

That terms (10) and (11) are indeed equivalent in this sense can easily be
seen now. The following terms are equivalent.

((if((some woman)walk))((no man)talk))i
((some woman)walk)i → ((no man)talk)i (A4)
∃x((woman x)i ∧ (walk x)i) → ((no man)talk)i (A7)
∃x((woman x)i ∧ (walk x)i) → ¬∃x((man x)i ∧ (talk x)i) (A8)

In the same way we find that (11) applied to i is equivalent with

∃x((man x)i ∧ (talk x)i) → ¬∃x((woman x)i ∧ (walk x)i),

and the equivalence of (10) and (11) follows with contraposition.
But if we try to apply a similar procedure to (12) and (13) the process

quickly aborts. It is true that (12) applied to i with the help of A10 can be
reduced to

((believe((if((some woman)walk))((no man)talk)))m)i

and that (13) applied to i can be reduced to

((believe((if((some man)talk))((no woman)walk)))m)i

but further reductions are not possible. In fact it is not difficult to find a
model in which one of these formulae is true but the other is false. The reason
is that it is not only the denotation in the actual world of the embedded terms
(10) and (11) that matters now, but that their full meanings (i.e. denotations
in all possible and impossible worlds) have to be taken into account. Not
only their Bedeutung but also their Sinn. Since no two syntactically different
terms have the same Sinn, no unwanted replacements are allowed.
Note that the solution does not commit us to a Hintikka style treatment

of knowledge and belief. We have not assumed that belief is truth in all dox-
astic alternatives, knowledge truth in all epistemic alternatives. But we can,
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if we wish, make these assumptions by adopting the following two axioms.

A11 ∀p∀x(((believe p)x)i ↔ ∀j(((Bx)i)j → pj))
A12 ∀p∀x(((know p)x)i ↔ ∀j(((Kx)i)j → pj))

Here B and K are constants of type e(s(st)) that stand for the doxastic and
epistemic alternative relations respectively. A term ((Bx)i)j can be read as:
‘in world i, world j is a doxastic alternative of x’ or ‘in world i, world j
is compatible with the beliefs of x’; ((Kx)i)j can be read as: ‘in world i,
world j is an epistemic alternative of x’ or ‘in world i, world j is compatible
with the knowledge of x’.9 If these axioms are accepted, we can reduce (12) to

∀j(((Bm)i)j → ((if((some woman)walk))((no man)talk))j),

a formula that expresses that (10) holds in all Mary’s doxastic alternatives.
Clearly, no further reductions are possible and we can still find models such
that (12) is true but (13) is false (in the actual world).
The mechanism helps us to solve some related puzzles as well. For exam-

ple, (16) should not follow from (14) and (15) and it doesn’t.

(14) hesperus (is phosphorus)

(15) (every man)(know(hesperus(is hesperus)))

(16) (every man)(know(phosphorus(is hesperus)))

Surely, (hesperus (is phosphorus))i reduces to h = p after a few steps, and h
and p are thus interchangeable in all contexts if (14) is accepted, but (15), if
it is applied to i, only reduces to

(17) ∀x((man x)i → ∀j(((Kx)i)j → (hesperus (is hesperus))j)),

and (16) applied to i can only be reduced to

9We may demand that B and K satisfy some axioms. The following seem a reasonable
choice:
∀x((Kx)i)i
∀x∀jk(((Kx)i)j → (((Kx)j )k ↔ ((Kx)i)k))
∀x∃j((Bx)i)j
∀x∀jk(((Bx)i)j → (((Bx)j)k ↔ ((Bx)i)k))
∀x∀j(((Bx)i)j → ((Kx)i)j)
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(18) ∀x((man x)i → ∀j(((Kx)i)j → (phosphorus (is hesperus))j)).

Clearly, the premise h = p and (17) do not entail (18).10

Terms (15) and (16) are the de dicto readings of the sentences ‘Every man
knows that Hesperus is Hesperus’ and ‘Every man knows that Phosphorus
is Hesperus’ respectively. Of course, we can also formalise de re readings, as
is illustrated in (19) and (20). The reading that is formalised by (19) can be
paraphrased as ‘Of Hesperus, every man knows that it is Hesperus’, while
the other term can be paraphrased as ‘Of Phosphorus, every man knows that
it is Hesperus’. The reader may wish to verify that in this case the relevant
entailment holds: (20) follows from (19) and (14).

(19) hesperus λx((every man)(know((is hesperus)x)))

(20) phosphorus λx((every man)(know((is hesperus)x)))

This possibility of quantifying-in, which the present theory shares with other
semantic theories of the attitudes, distinguishes the approach from Quine’s
[1966] syntactic treatment. But our semantic theory is as fine-grained as any
syntactic theory can be, for no two syntactically different expressions have
the same meaning. The resemblance between the syntactic approach and
ours is close: the syntactic theory treats the attitudes as relations between
persons and syntactic expressions, we treat them as relations between persons
and the meanings of those expressions. But since different expressions have
different meanings, this boils down to much the same thing.
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